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ABS TRACT

Computer simulation of the mechanics of molecular systems
is a popular and powerful method for understanding chemical
processes The compleioty of modeled chemical systems has
advanced from hard spheres and rare gases to liquid solutions and
biomolecules Such simulations are computationally intensive and
thus are imaited by the speed of available computers This paper
describes the use of specialized hardware, a high speed floating
point array processor (AP), to dramatically speed up molecular
raechanics, in other words molecular dynamics, Monte Carlo, and
energy minimization calculations Although the array processor is
a cost effective solution for computationally intensive problems in
terms of hardware (full-time AP usage is equivalent to two to eight
hours per day of Cray-I time), its full speed comes at the expense
of programming in a relatively difficult parallel assembly language.
Since the architecture of the machine is dramatically different
from conventional computers and utilizing its fast speed necessi-
tates using this architecture on the assembly language level, the
proper design and imaplementation of algorithms is critical The
molecular mechanics software design discussed bere, consisting of
12000 lines of C and 7000 lines of AP assembly language code, is
quite general and has been used to study systems ranging from
rare gases to biomolecules This implementation yields effective
speeds approximately thirty-five times faster than a deccated DEC
VAX ii/in computer with floating point accelerator and optimized
VMS Fortran. thus allowing simulations to be run in a week and a
half on the Al which would require a year of dedicated VAX Lime.
The flexibility of the LW7X operating system, whose source code is
accessible and can be modified to optimize performance, com-
bined with the modern features of the C language, have made this
implementation much easier, by providing a convenient and power-
ful environment in which to imbed the hand-coded AP assembly
language modules. Applications to date range from the molecular : 7'
dynamic calculation of infrared, Raman. and electronic spectra in I
gas and liquid solutions to the calculation of thermodynamic quan-
tities for water and the simulation of Lhe molecular dynamics of
solution reactions and of polypeptides.

Submitted to,/. COmp Che.L July 1982.
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Peter H Berens wid Krnt R. Wftso

Department of Chemistry
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I. I)TMDUCTION
-In recent years molecular mechanics, the computer simulation of molecu-

lar systems using molecular dynamics. Monte Carlo, and energy minimization,
has eme-ged as a powerful tool for investigating and understanding chemical
properties and processes., While straightforward in principle, these techniques
can be unusually demanding computationally and thus the size and complexity
of systems which can feasibly le simulated is determined by the speed and avai-
lability of computer hardware-)In this paper we discuss a particular solution to
the computational needs of molecular mechanics, the use of specialized
hardware, a high speed array processor, in our case a Floating Point Systens,
Inc AP-i1OBrwhose use we pioneered after purchasing serial number two 'In
other paperstit we have also discussed an alternative solution, the division of the
problem among an array of different processors operating in parallel. Yet a
third solution&-is to use a vector processing machine such as a Cray-1. We will
focus here primarily on molecular dynamics within the array pr cessorprograrm
package for molecular mechanics we have. developed, called-1ewto', whose
o6aception is described in earlier papers.1.tl~n section 11 we examine tb archi-
tecture of the AF-a.203,ps this is necessary to understand how to efficiently use
the machine A*In section M11 we lay out the specifics of the structure of the pro-
gram package we have developed for molecular dynamics Finally, in section IV
we present the results, analyze potential array processor improvements, and
pont out the advantages and importance of the environment in terms of

guage and operating system4

Classical molecular dyna-'s4 is the simulation of systems by the numeri-
cal integration of, for example, 'ewton's Second Law, to obtain particle trajec-
tories, i.e coordinates and morrenta as functions of time, and then the compu-
tation of physical properties as averages over these trajectories In the Monte
Carlo technique, particles are moved artificially as the result of random number
generation, rather than dynamically. The Monte Carlo technique is less general
than molecular dynamics in that it is appropriate for the calculation of proper-
ties which depend upon averages over coordinates, but not for properties which
are explicitly Lime dependent These fields are reviewed by Alder.5 Wood and
Erpenbeck,6 Valleau and Whittington,7 McDonald. Binder,' and Wood1 0 and are
the subject of a workshop. 11 Energy minimizatio 1 O1 5 is the search for the
minimum energy of the system as a function of particle coordinates.

Early liquid state molecular dynamic simulation, 6 involved hard sphere
atorns Later, soft potentials, a.g. Lerinard-Joaes. were introduced .7 " 8
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Computer simulation became a tool for testing approximate theories for atorruc
liquids 16 More recently, with increasingly powerful software and faster
hardware, attention has focused on more complex molecular systems, ranging
from water1 0 to proteinsw and nucleic acids

Array processors can bring much greater computer power to bear on chern-
icel problems than was previously available, ,2.2 2 However, their use carries
the serious disadvantage that, at least up to the present. their maximu-m
efhiciency has only been gained by assembly language programming, as an
efficient compiler for such unusual architecture is not yet available Thus the
development of efficient and general purpose software for array processors is
very important as, in the long run sohtware costs will usually dom."inate
hardware costs even in a University environment. We thus bope that the tech-
niques discussed here which we have used in the development of Newton, our
tool for molecular mechanics on an array processor, will prove useful to others
using array processors for molecular mechanics as well as for other classes of
problems.

19. ARRAY PRDCSR

There are three ways to build faster computer hardware. The first is to
increase the speed of the logical elements themselves, the second LS to horizon-
tally spread out the calculation among many parallel elements all working at
once, and the third is to vertically spread out the steps of the calculation in
time along a pipeline, so that many successive different calculations can trickle
down the pipeline together Arrays of processors 1, 2 are an example of highly
parallel architecture and supercomputers such as the Cray-. and Cyber 205
make extensive use of pipelines (as well as parallelism).

The Floating Point Systems Ar-iZoB (AP) array processor is a special purpose
computer, which combines all three approaches, logic speed, parallelism, and
pipelinng, but pushes none of these to its extreme limit. It is designed for very
fast processing of floating point arithmetic. 2 In comparison, logical instructions
are much slower and more cumbersome. It is not an array of processors as
many infer from the name, but a single parallel and pipelined processor whose
architecture is easily exploited for array type operations The maximum floating
oirit rate is 12 milion operations per second (12 megaflops) This speed puts
he AP in the same computational class as many larger main frame computers,

as indicated in Table I Because it is a peripheral processor, the AP requires a
host computer to initiate data and prograrn transfers to and from it The nature
of the host interface as well as the host operating system are thus important.
factors, as will be discussed below

Why Use an Array Processo?
The major reason that the use of an array processor is attractive is its cost

effectiveness This is shown in Table I from the work of Bucy and SenneA as is
described in detail by Karplus and Cohen..2 Columns one and two show comput-
ers that have been commonly used in scientific numerical applications and their
theoretical speed, as measured in millions of floating point operations per
second (megafklps) Columns three and four Show the performance in terms of
time and achieved megaflops for a sample application Columns five and six
show the motivating economic reason for using the Axi-z1. It has the lowest cost

r achieved megaflop and one of the lowest overall installation costs. However
the last column shows where the real price is paid. The A-20? has a substan-
tially higher program development time. in addition to a costdy learning curve as
users must become familiar with Its unusual and challenging parallel assembly

n , , ,,FI I nI' mI~
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language

Programmaxg Techniques
Three methods of progrann-ng the array processor are available The level

highest in abstraction, but slowest in speed, is the Fortran complier. Fortran is
a language famihar to most computational chemists, but unfortunately no exist-
Ing Fortran compiler26, 28 for the AP-i2oB generates effcient or compact code.
Compiled code is thus lengthy (one can quickly consume more program source
memory than is available for the AP-13OB) and therefore necessarily slow, since
the machine is synchronous. Yost applications would thus require the storage of
instructions in main data memory which is costly not only due to the loss of
main data memory (two locations per each instruction stored) but also in the
overhead of the overlaying process both in terms of the bookkeeping required
and the actual transfer of the instructions to and from main data memory as the
overlaying is done. The improvement in program speed and performance of For-
tran in the AP-=B over a VAX n /o can be as little as a factor of two or three.21
This degrades even further if many data transfers to and from the host or much
loadmg of program source memory from main data memory is required.

The second level of usage is to vectorize the algorithm into a form in which
the problem can be solved by a series of calls to canned vector routines written
In assembly language by Floating Point Systems (FPS) This can be an improve-
inent over the Fortran compiler, but since the code for the individual vector
operations cannot be overlapped, the full advantage cannot be taken of the
speed of the AP. Two modes of operation are possible, one in which the canned
routines are called on an individual basis from the host C or Fortran program
and the other where these calls are hnked together in a rudimentary higher
level language, know as the vector function chainer. The vector function pro-
gram is then compiled into AP assembly code, and executes the set of opera-
tions as a group. It is vitally important to use the vector function chainer to
string these operations together so that the overhead involved in loading and
wtarting the APis only paid once. However, the vector function chainer gen-
erates even worse code than the Fortran cornpiler, so any loops coded in the
vector function program can also degrade performance. A typical increase in
peed over that of aVAX I iM is three to twenty using this approach, as it is very

dependent on how well the particular canned functions encompass the problem
being solved Molecular mechanics calculations tend to be at the low end of this
range.

The third level of usage, needed to realize the full potential of the AP, is to
hand-code commonly used algorithms in Au-=0B assembly language. This
presents a problem to most computational chemists in that it may require skis
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urfamiliar to them. In order to investigate the reason for the necessity end
Inherent difficulty of assembly language coding, a knowledge of the architecture
of the AP Le helpful.

Architecture
The array processor is a parallel and pipelined machine n A parale' com-

puter is one that can perform more than one operation m a single instruction
The array processor consists of several independent memories and arithmetic
units. as shown in .g 1. all of which can be addressed or initiated within a sin-
gle instruction of the &P-i2OB There are three types of memory. Program
souce memory, which is 64 bits wide, is used to store assembly language
instructions Data is not stored intermnxed with instructions, as in most com-
puters, but resides primarily in main data memory (36 bits wide) which is avai:-
able in two speeds, known as "fast" and "slow" memory Data can also be stored
in table memory which can consist of both Read Only Memory (RoM) and Random
Access Memory (RAM) In our confitguration we have 64 K words of main data
memory, 2K words of table ROM, 4 K words of writable table memory, and 1.5 K
words of program source memory The actual hardware of the machine can sup-
port up to 4 K of program soLrce, 4 K of writable table memory, and 5.2 K of
main data memory (however, only one individual 64 K bank can be accessed at
any one time). In addition there are two banks, DPX and DPY, of thirty two (38 bit)
registers called data pads (only eight of which can be accessed at a time) for the
storage of intermediate results Addresses (pointers) and integer parameters
are stored in sixteen (16 bit) integer registers, known as S pads In addition to
the memories there are two separate floating point arithmetic processors, an
adder and a multiplier. The floating adder is capable of a variety of operations
such as addition, subtraction, logical and, as well as logical or. There is also an
integer arithmetic unit which can be initiated every instruction and whose result
Is available for use in the instruction in which it was initiated

Fig 2 shows the pipehne2' nature of the AP-13m. The floating multipher of
the AP is a three stage pipeline, and thus a multiply operation started in one
instruction will take a minimum of three instructions to complete A new multi-
ply, however, can be initiated at every instruction and each initiation causes the
preceding operations to be pushed through the stages of the pipeline If the
preceding operations are not pushed, the results stay in the pipeline until
pushed out later by initiating other multiplies. The floating adder is a two stage
pipeline with similar properties to the multiplier. The memory units are also
pipelined in the sense that a memory fetch initiated in one instruction does not
complete and cannot be used until three (or two, in the case of table memory)
instructions later.

Program branching can only be performed, with a few exceptions, on the
output of either the floating adder or the integer arithmetic unit For example,
to branch if a particular floating number is negative, the number must first be
lenerated in the adder, which requires two instructions On the third instruction
the result is available from the adder and on the fourth, and not before, the
result may be tested and branched upon. This is the principle reason that cal-
culations which require a sganificant amount of logic do not perform as well on
the AP-oB Branching based on integer operations is not as slow because the
result is available in the instrtaction in which the operation is initiated and may
thus be tested in the following instructiom In either case, building logic
efficiently into an AP-1 Oe assembly language program can be quite cumbersome

Another important feature of the architecture of the A?-1a3 is that each
separate memory or register unit can have one read or write (in the case of
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registers like DPX or DY both a read and a write) initiated pEr instruction Thus
the placement of data among the various memories is extremely important in
that the more spread out the data the more data can be accessed in an indii-
dual instruction For this reason it is important to have writable table memory
in addition to main data memory The difficulty encountered wIth Lhe USE of
writable table memory is that changing data stored in that memory is a multple
instruction process and very slow in comparison with writing into main data
memory Whether it is important to have the fast rather than the slow man
data memory is highly dependent on the algorithm being coded For molecular
mechanics code, which is usially computation rather than memory bound, the
slo* memory seems adequate

As can be seen in F'g 3, all thesE units interconnect th,"ou',h a complicated
data pad bus structure. It is contention for the data pad bus. which can contain
only one value per instruction, that is the most common difficulty in AP assem-
bly language programming Thus eficient programming of the A.P-j2o involves
exploiting the parallel nature of the components of the AP and the innr connec-
tivity of the data paths to give the maximum throughput This means that the
manner in which a particular part of an algorithm is coded in the early part of
the code has long reaching effects in the later stages of coding the algorithm In
manv instances it is necessary to code an algorithm in more than one way and
then exane which scheme can be made the most efficient This can require a
high degree of patience and persistence

The kP-r20M interfaces to the host computer (in our case a DEC VAX 11/-750)
through two (or possibly three) channels, as shown in Fig 3 The virtual front
panel is used by the host to control the AFI-1OB It does not exist in reality but is
a set of registers (in our case on the vAx L.NTs) which can be examined and set
by the host computer. The "JN-X device driver for the AP uses these registers to
start and stop the Al, to exajmne and deposit into memories and register's, and
to initiate Direct Memory Accesses (DMTA's) over the UMaUS Any data mnipula-
tion done using the front panel is necessarily very slow. Thus, data and program
instructions are normally transferred between the host and AP via the DMA pro-
cess which can occur at approximately a megabyte per second Due to the
difference in word lengths between the usual host floating point representation
(32 bits) and the AP representation (38 bits), floating point numbers are con-
verted "on-the-fly" during the DMA process by the AP's interface hardware. To
preserve the full precision of the AP's representation requires using the much
slower front panel or DMA'ing out the data in successive passes Preserving full
precision is important if numbers are to later be reloaded back into the AP and
the calculation continued, as the result will not be the same as would be
obtained by doing the same uniterrupted calculation in the AP if the numbers
are rounded to 32 bits The AP has a much larger dynamic range (I0 - '0 to

1 I5 * ) than the usual host representation (10- to 106) and the only way in
which these larger floating point numbers can be extracted from the AP-M3)o
preserving the full 38 bits of precision is to use the front panel However, if the
floating point numbers are within range of the host's floating point representa-
tion, precision can be preserved by DMA'ing out the data in multiple passes 0

First the actual data is DfU'ed out, undergoing convergent rounding to 32 bits
Next the data is DUA'ed back to the AP and subtracted from its original value in
the AP The result of this subtraction, the remainder, is then DUA'ed to the host
These two arrays (the rounded data and remainder) can then be used to recon-
stuct the original value In the AP by DMA'ing them into the AP separately and
adding them together in the AP. This requires the alocation of scratch areas in
the AP's memory.
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The DUA channel also is a botUeneck when large volumes of data are to be
transferred to and from the host computer The AP can use approximately 83,
of the bandwidth of the UNB s A typical transfer rate is approximately 0 8 VB
(megabytes per second) Particularly operating system dependent is the sever-
ity of overhead pad for initiatug each transfer On VAX's, the poor hardware
design of the UNIUS adapter also lowers the bandwidth However, the
throughput can be maxinzed by the using the asynchronous capability of the
DMA channel A third optional DRA channel, know as an 1OP, operates in a manner
similar to the standard DMA channel except that it has less general format
conversion capabilities and lacks a sophisticated handshaking protocol which
may make it inadequate for some applications

Another important architectural feature o! the AP-123 is that all main data
memory locations are 38 bits and designed to accommodate a single floatu-z
point number While it is a quite possible (and easy) to store a single !6 bit
integer in each 38 bit location, in many instances it would be more efficient to
pack more than one integer in each floating point word This would provide sav-
ings not only in the amount of memory required but also in execution time by
cuttin, down the number of memory accesses required to retrieve the dat
Although the 38 bit word, as shown in Pig 4, consists of three different fields, a
18 bit low mantissa, a 12 bit high mantissa, and a 10 bit exponent, not all of
these bits are accessible to an AP-iomP assembly language program. All 16 bits of
the low mantissa and all 10 bits of the exponent can be placed into the S pad
registers, but only B of the 12 bits of the high mantissa (the so-called table
lookup bits) can be accessed by the AP-i203 program Furthermore, there is no
way to write these integers back into the packed word from an AP program and
these packed integers cannot be loaded by the DMA channel into the A-P-i0, but
must be loaded using the front panel which can examine and deposit all the bits
of the low mantissa, high mantissa and exponent separately.

IM. NI7%rN
Our tool for molecular mechanics, Newton. consists of a variety of hardware

processors and a generalized software package which will be described in this
section- The software portion of Newton consists of 12000 lines of C code and
7000 lines of AP code It is designed to be a modular and generalized approach,
applicable to systems from rare gases and diatomics to polypeptides, proteins
and nucleic acids in solution. While Newton can be used for Monte Carlo and
energy minimization, its major use to date has been for molecular dynamics
based calculations, and it Is these we will describe in more detail The array
processor, as shown in N 3, is connected to aVAX iillrW as the host processor
The second DVA port can be connected to a PDP 11 /4 which serves as the host to a
three dimensional graphical display system, an Evans and Sutherland Picture
System Al four of these processors can be activated simultaneously to allow
the computation of molecular dynamics (and derived properties such as spectra
and thermodynamics) and the real time display of the atomic motions or
derived properties on the Picture System as they are calculated.

We know of four other applications of aspects of molecular mechanics which
have been made using array processors Pottle, Scheraga and co-workers31

describe a package for energy minimization of proteins Although the problems
of force evaluation are similar, the approaches chosen are different Newton is
not confined to any one set of potential surfaces, such as the electrostatic plus
lennard-Jones potential surfaces used by Pottle. but is capable of implementing
essentially arbitrary potential surfaces, as will be seen below However, we have
also paid the price for this generality While their inner loop code operates
using 80% of the theoretical maximum floating point speed of the array

__________________________________II__II__I



FLOATING POINT REPRESENTATION

10 BITS 12 BITS 16 BITS

H IGH j LOW
EXPONENT MANTISSA MANTISSA

10 BITS BIS16 BITS

LDSPE LDSPT LDSPI

F gure 4. Ak-2203 floating point representation A main data memory word is
chvided into three parts a 16 bit low mantissa field, a 12 bit high mantissa and a
10 bit exponent Below are shown the various AP instructions that can be used to

read and treat these fields as three variable length integers Note that some of
thL bits are inaccessible in this manner.
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processor, we average somewhat less than 5o% This is primanly due to the
extensive logic and indexing necessary to handle the general case Much of th.s
code is overlapped with the actual floating point computation (since the logic
consists of integer operations) With a conventional computer, the integer
operations would have to be done in serial with the floating point operations
This group has also implemented molecular dynamics calculations for water 3 2

and Monte Carlo calculations for liquid armmonia 3 and for liquid methane 34 In
addition. Andersen and SwopeS., 35 have implemented molecular dynamics code
for water and atomic solutes in water, and Berne and co-workers5 have carried
out Yonte Carlo calculations both on an AD-ix0 Damrnmkoehler and co-workerS57

are irnplementu-ig molecular mechanics code on multiple CSP?. array proces-
sors Also of related interest are the crystallographic work o! Furey and co-
workers"9 and the simulations of plasma dynamics by the UCLA group, ' both on
FPS k- 120B' s

Newton contains seven separate host programs which operate cooperatively
as shown in Fig. 5. The first of these is APCOM which is an interactive command
interpreter It allows thr user to type in various comin-ands, validates the com-
mands and. where appropriate, instructs the next link in the chain ARN, to

: -form the operation requested APRUN is the program responsible for running
e AP, and its only function is starting and stopping the AP and emptying the

data collection buffers while the AP is running It uses two other programs.
AZOA. to load the AP initially with constants and parameters, and A. Ju3_.:_ to
calculate the force lookup tables for the intermolecular interactions whenever a
new system is simulated DRAW is an optional process that can be used to display
the dy-namics on the Picture System as they are being calculated on the AP
MOVE can be used to display the previously calculated dynamics of a system
using coordinates saved in a file by APRUN It also allows color movies to be made
from these files. DOaATA is a program which allows the computation in back-
ground mode of a series of runs to collect data over an ensemble of initial start-
ing conig rations and momenta. It is interruptible to allow users to carry out
program testing and development and systems tasks such as disk backup
without interfering with the runs

All of the actual code involved in molecular dynamics calculation has been
written in A.-ic0B assembly language and split into independent modules, as
shown in Fi 6 Other AP modules not described here provide for other types of
molecular mechanics and for the calculation of phenomena derived from molec-
ular dynamcs, such as infrared, 4 1,42 Raman.4 -4 and electronic 46 . 47 spectra and
thermodynamic quantities 48 The modules are then linked together using a sin-
ple vector function chaner program that loops over the routines to perform the
number of integration steps requested Data is buffered inside the A-TIO and
DM'ed out asynchronously when the buffers are filled, while the AP is running
The buffering mechanism will be examined later in more detail

The remainder of this section concentrates on our approach to molecular
mechanics The implementation of molecular dynamics consists of two basic
steps, force evaluation followed by numerical integration- It is these two func-
Lions which are performed by the AP modules shown in N 6 and the methodol-
ogy behind their operation and design which will be discussed We examine the
types of hsts and indices needed for a general purpose molecular mechanics
package We also examine various types of boundary conditions which are
important in many applications, especially those with long range forces.
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SOFT V'ALL
INTERMOLECULAR CUBI P R DI

FORCE CUBIC PERIODIC
CALCULATOR TRUN OCT PERIODIC

NONBONDED FORZES

TWO BODY FORCE BOND STRETCHING
CALCULATOR

z I
THREE BODY FORCE BOND ANGLE BENDING

CLCULATOR AND CROSS TERMS

FOUR BODY FORCE 1
CALCULATOR TORSIONAL FORCES

INIEGRATOR MODIFIED VERLEI"

I)ATA COLLECTION WRITE TO DISK

Flgure S. Newton AP modules for molecular dynamics The various hand-coded
AP-iaa assembly language modules ar shown in the loop in which they are exe-
cuted. The entire loop is executed in the AP itself witb no intervention required
from the host. Brief descriptions of the modules are given on the right.
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How to Describe an Atom
In addition to initial coordinates and momenta, other information is needed

to create the wide variety of lists necessary to look up masses, positions, and
forces among atoms These can all be derived from a basic set of informaticn.

s*.ract
Cha" ftr.
ch- type.
tnt pa&-ezx.,
int param.

where the above is the C language49 template for a structure describxrg thc
atom parts The first item in the structure is the atomflags These flags car. bE
used to enable or disable particular features For example, one flag bit can bE
set to fix the atom in space so that it cannot move (although it wLl still exert
forces on neighboring atoms) Another is used to specify that the atom is thE
start of a molecule. 1f this flag is set then the pwan part contains the tot&
number of atoms that follow which are in the same molecule Another ftag b.t
can be set to indicate that the atom is part of a ring structure. in this case the
paran element contains the other parent of this atom necessary to complete
the ring structure. Another flag is used to specify if the atom is to be drawn in
the picture display or not Currently these four flags are the only ones used,
although B such flags are possibi.- for future uses

Another part of the structure is the type of the atom, a number between C
and 255 For example for water the atom types are hydrogen and oxygEa In
organic molecules or ionic solutions it is often necessary to distinguish between
different types of multivalent species (such as carbon) or different ionic state-
and thus each different chemical state of a particular elements wl have a
different tire number.

The parent element specifies to which atom the present atom is connected
Using this tree linkinzg mechanism the entire bond structure of any non-rir4
molecule can be determined With the addition of the ring flag and the extra
link provided by the pcram word, any reasonable chemical structure can be
handled

The atom flag, type and parent are stored as the exponent, high mantissa
and low mantissa, respectively, of an AP-iB writable table memory location
The atom pararn word occupies the low mantissa of a main data memory Word
whose other fields are currently unused.

Solely from this simple information all the other lists needed by the AP-i203
modules described below can be generated. The atom parts, atomic coordi-
nates, and momenta are the only pieces of information kept in Newton fill files
which are used to start or reload a Newton run.

Boundary Ccmditions

Two of the AP modules (the intermolecular force evaluater and the ntegra-
tor) depend on the type of boundary conditions being used Currently we have
programs that allow the use of four types of boundary condiions soft walls,

rd walls, minimum image cubic periodic, and minimum image truncate:l
octahedral periodic. Other possible boundary schemes' include spherical and
periodic boundary conditions using Ewald sums.

Cubic soft walls are the sunplest, No imaging is done, and thus particles
feel only the forces of the other particles in the cube. When a particle
approaches a wall, a soft spring force pushes the particle back into the cube



This type of boundary condition is useful for studying small clusters or droplets
of particles The disadvantage is that a high fraction of the particles can be on
the surface of the droplet or cluster and, in many Bituations, these surface
effects can be important Consequently, a larger number of particles are
needed to study bulk phenomena In addtlon colisions with a wall can give a
molecule a large, artificial, angular momentum as it is shoved back toward the
cluster

Hard walls are specularly reflectLag and cause problems with integration aF,
the velocity of the particle normal to the wall reverses itself in one integration
time step Such a discontinuous change can cause integration algorithms to
"blow up" This can be avoided by altering the algorithm so as to alter the past
tLme history of the particle kas far back as necessitated by the algorithm) whcn
it strikes the wall to become that of a particle havig entered the box with t.hc
reversed normal velocity. The problems with surface effects still remain.

Periodic boundary conditions7 are commonly used to reduce surface effects
for the simulation of bulk matter The simplest is a cubic mm n:uLm image In
this scheme the system of particles resides in a central cube which Is sur-
rounded by exact replicas of this central cube on all sides, edges, and corners
Particles interact only with the closest image of any other particle In all cubic
periodic boundary algorithms, when a particle leaves the central box it is
replaced by one of its images entering from the opposite side

A truncated octahedral boundary condition50 is similar except that the unit
cell is a truncated octahedron which more closely resembles a sphere This is
important for minimum image boundary conditions as the forces must be
smoothly feathered to zero at the radius of the inscribed sphere of the unit cell
to avoid abrupt changes in force and loss of energy conservation For a cube,
48X of the volume of the cube hes outside the inscribed sphere in the corners of
the cube and particles in this volume don't contribute to the forces on the test
atom For the truncated octahedral geometry, only 4.5% of the unit cell volume
lies outside the inscribed sphere, and thus more of the dynamics calculation is
effectively used In addition the excluded volume is more evenly distributed in
angle than for the cube. and the isotropy of space is thus less distorted There
exists an easy waya0 to code algonthms to implement the truncated octahedron
The number of possible space filling soLid tessellations is small Out of the regu-
lar and Archimedean polyhedra there are only five which are space flling the
cube. triangular prism, hexagonal prism, rhombic dodecahedron, and truncated
octalhedron2,25, and thus the natural alternative to the truncated octahedron
would be the rhombic dodecahedron

IntermDolecular Force Evauaticn
The first module of AP code is the intermolecular force eveuater, used to

compute nonbonded forces, i e those between atoms on different molecules, or
separated by so many bonds in a single molecule as to be considered indepen-
dent As pointed out above, it comes at present in four flavors soft and hard
walls, cubic periodic, and truncated octahedral periodic boundary conditions
We approximate all intermolecular forces as purely pairwise additive, thus

V = Vfr. 0)

Mi which rflS the distance between the i th and j th atoms The potential func-
t.ion V(rtj) depends solely on the chemical type of the atoms involved
Currently, intermolecular forces are evaluated by loopuin over all the possible
pairs of atoms in the system simultaneous!y calculating the force for both



members of the pair. This requires logic that allows the intermolecular force
evaluater to skip over all the pairs of atoms whose forces are to be calculated by
one of the other bonded force routines

To skip over the appropriate bonded interactions the parent (and, if the
ring flag is set, the pararn word) is used to determine bonding up to and Lclud-
ing four body interactions which causes the intermolecular force evaluater to
skip over these interactions While this involves extensive integer arithmetic
and logic, the overhead is inconsequential as it is overlapped completely with
the code to do the m.nimurn inaging for the periodic boundary conditions Ear-
her experimental versions of the intermolecular module did not carry out t-i
logic and instead calculated intermolecular forces for all pairs of atoms whethc -
bonded or not The bonded force evaluaters then simply subtracted out these
erroneous intermolecular forces when they calculated the intramolecu__.r
forces. This addition and subtraction caused disastrous results due to nuneri-
cal round off caused by adding the relatively small intramolecular forces to the
large erroneous intermolecular forces that had not yet been subtracted out

Andersen 3D has pointed out that when using a smoothing functior for poten-
tial energy, the correct force evaluation involves calculating both the force and
potential energy, as can be seen from,

V.(r) = Y[r)S(r) (2)

dY,.r) i A,) S(r) + V(t) dS(3)

where V(r) is the V(r) potential smoothed to zero by the smoothing functicrn

Currently all intermolecular forces are calculated by table look up This
involves allocatng most of main data memory to the force look up tables Linear
interpolation of these grid points is used to give the actual forces. At least m
principle, as has been pointed out by Andersen and co-workers,5 this scheme
has a flaw when used with the Verlet integration algorithm due to the infinite
second derivative of the force at the boundary between the linear segments
Andersen uses a better scheme employing a polynomial to fit fixed length seg-
ments of the potential curve with each polynomial joining smoothly and continu-
ously out to several derivatives at the end points of the adjoining segments This
involves less data storage to calculate the intermolecular forces as only the
polynomial coefficients need be stored In addition, since polynomials are used,
the potential energy as well as the forces can be calculated with little extra
effort from the same set of coefficients.

For large systems, most of the computational time is spent in intermolecu-
lar force evaluation, since when done on a pairwise basis for the entire system of
N atoms it becomes a calculation proportional to N2, while the bonded,
intramolecular calculations only scale as N. A possible alternative is to use
neighbor Iists5L which are only updated after several time steps so that only
the atoms which are close to the atom in question are scanned to calculate the
intermolecular forces. However, neighbor lists create a considerable storage
problem in that each atom must have a list of all the other atoms which are near
it. For a relatively large system this list could easily exceed the amount of main
data memory available. For small systems, the effort involved in updating and
indexW& the interactions from such a list may exceed the effort to do all the
pair-wise calculations.
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Two Body Module
The two body module calculates all simple bonded forces in diatomics such

as CO and N, The force between two bonded atoms i and j with coordmates- r,
and r,. respectively, is

d V(rtg)Irt = -yFj = -Ts v = Tj V = ri - v,. ()

in which F, and F, are the vector forces on the i th and j th atoms, respectively,
which are separated by the distance %g = Ir, -rj1. V is the gradient with
respect to the Cartesian coordinates of atom i as expressed in Eq (AI) of the
Appendix

The two body program uses a list as shown in F &g 7. The low mantissa and
exponent of the first word in the List are used to index the two atoms involved
The atom number of the first atom (stored in the low mantissa) is subtracted
from the atom number of the second before it is stored in the exponent field
This allows us to use the fields, such as the exponent, to index an atom number
which in principle can be much larger in magnitude than the bit field could nor-
mally handle Since atoms that are bonded to each other tend also to be close
to one another, the atom numbers are very close in magnitude, and thus the
smaller bit fields are big enough to allow this relative indexing of atoms Code
common to all two body force evaluations is used to fetch the atomic coordi-
nates and calculate the internuclear vector. The potential index, or switch
parameter, is then used to pick among a variety of force calculators (such as
barrnonic, Morse, etc.) that will calculate, given the internuclear vector, the
scalar force along the bond The low mantissa of the second word in the list is
the address of the force constants for the force evaluator to use In this way, for
example, one routine can be used to evaluate all harmonic forces. The common
main line code then decomposes the force along the space fixed z. I, and z
axes This module is only used for diatomics For more complex molecules it is
more efficient to have the three body module also calculate the two body forces

Three Body Module
Three body interactions are those whose calculation depends on the coordi-

Dates of three particles, r,, ri, and rk An example of this isa force due to bond
angle bending which requires the three atoms involved to be specified in order
to calculate the bond angle. 0. The three body module uses a hst simlar to the
two body module, as shown in Fig 7. The low mantissa of the first word contains
the index to the middle atom in the three body interaction. The exponents of
the first and second words contain the atom numbers of the other two atoms
after subtracting the atom number of the middle atom The high mantissa of the
first word selects which three body force evaluation routine is to be used
Currently we have two such evaluaters, a complex one5 for water molecules and
a simpler harmonic one.

V(6r..6r,6O) = k0 (6-.) + k1 (6.)' + k,('t) 2 . (5)
which is written in terms of the bond vectors r, and ri where

6r. = t I -r) - r .Io- 1 (6)

&?b= Ir -r I-r= Ir.? - , (7)
and 66 = @-0-, in which r. r6 and 41 are the equilibrium bond distances and
angles, respectively, of the potential V. The two body part of the potential is
shown in the above expression as it is also calculated in this module as explained
above. The water4 force evaluator has various higher order terms among 6r,.
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igure. Format of interaction lists. The top panel shows the format of the two
body interaction list as stored in AP main data memory. The low mantissa of the
first word holds the ith atom number times three (for faster irndexng into the
three dimensional arrays) The high mantissa is an B bit integer specif -ng
which force calculator to use (harmonic, Morse, etc.). The exponent field con-
tains the difference between the , th and i tb atom numbers Ths is done to
allow more dynarmc range in the 10 bit field The second word contains the
address of the force constant. The fwritch parameter or potential index is used
to specify which force evalduation routine is to be used for this iMeraction The
three body list, In the middle panel, is similar except that the mniddle atom is
used to Index the other two The four body list, as shown in the bottom panel, is
also limilar except for an constant offset which is subtraced from the force con-
Ktant pointer to allow more dynamic range.

* .,. .
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6r, and 60 in addition to the terms shown in Eq (5). The low mantissa of the
second word contains the address of the force constants (k0 , kI, and kz) used by
the force evaluators

Common code is provided by the three body module to calculate the two
internuclear vectors and the bond angle before callmg the appropriate three
body force evaluator. The evaluator returns scalar forces along the two inter-
nuclear vectors and a force associated with the bond angle. and the three body
module resolves these forces into Cartesian forces on the three atoms involved
The forces on the atoms are given by

7i=- -V , = - , VVr4 r1 V-3 jV+ -v,% (8)

= -V,V= VVY, r, + VV, rb . -V = oV+V6V- -V, (9)

Fk -VkV j VVI rb + ±- -Vk = vv, V --. Tj, (10)

where we have used Eqs. (A9) and (AID) of the Appendix to evaluate the chain
rule gradients for the tensor vector product appearing in Eqs (8)-(i0). Simi-
larly. using the results of the Appendix, the gradients involving the bond angle -6
in Eqs (8)-(10) can be expanded in terms of gradients involving the bond vectors
r, and r4.

Vd = V,6Vr. =v~ (::)

W,0= YV jr. V&,O V, rb = -I-V1 3(12)
TO = V6,I$V& rb M TO - (13)

Since the bond angle can be written in terms of the dot product of the two bond
vectors,

coW = ,* (14)

the terms in Eqs (11)-(13) can be evaluated as

V.0 = -'--V'cos. (15)

Using Eqs (14) and (15).

V, c 0 r. v(r. r,) -r..rV. (r.r) (16)

where
V.(r. r6) = (17)

and

T.a (18)r

Substituting Eqs. (17) and (18) into Eq. (18) yields
ri,

T.r b-(u. u.)r*
Vcos= T, (19)

Now. by using .q (14) with Eq (19) we have
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A similar derrvation for the gradient with respect to the other bond vector r,
yields

VO cos.0 = r, re cos-6(2
r, ro r,s (2:)

Fnnally, substituting Eqs (20) and (2:) into Eq (15) we have

V,~ ~ re r, c 090[,ob

-~r. r, cooi
Vb7 sin15 tr b

Thus. using Eqs (8)-(13) and Eqs (22) and (23) the forces can be appropriatey
resolved onto the three atoms involved These results are the same as those,
arrived at using the Ehaschevich and Wilson s-vector method5 , b. to evaluatE the
elements of the B matrix used in normal mode vibrational analysis to relate the
internal and Cartesian coordinates through a Taylor's expansion

Fbur Body Module

A four body interaction requires the knowledge of the postions of four par-
ticles to calculate the force The two most common examples are torsiona'.
forces and out-of-plane bending forces 56. s The four body module for torson'
forces uses a list as shown in Fig 7. The atom numbers of the two inner atoms
are stored in the low mantissa field of the first and second words, with the j th
atom number multipLed by three for indexing convenience The inner atom
index numbers are first subtracted from the closer outer atom number and then
stored in the exponent field of the two words The high mantissa of the first
word is used to store the potential index value to select a particular torsional
force evaluator with the force constants being indexed by the value in the high
mantissa field of the second word Since a complete memory address cannot be
stored here, the value in the high mantissa of the second word is an offset to the
base address of the torsional force constants Currently there are three types
of torsional force evaluaters which handle single, double, and triple bonds.

Common code is used to calculate all the internuclear vectors and the tor-
sional angle. A scalar force is returned which is solely dependent on the tor-
sional angle. This force is then decomposed onto the atoms as foilows If we
take a four body interaction a shown in top half of Fg 5. each of the four atoms
t. , k, and I has coordinates represented by the vectors r, . r,. r. and ri, If we
now define the bond vectors,

Tr,= r. -rj, rg = rk -r . r= rg -r. (24)

and look down the j -k bond, then we have the representation shown in bottom
half of Fig. 8 where r, and rt are the projection of r, and rs into a plane and the
p torsional angle is formed between them We can now write

r. = r, X r r. = Ir. 1 (25)

n = rXre r, =I . (26)

and

= (r X r2). (r3 X r) r. r (27)
IrXrj ItsXrg! r.rb

h..
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Agure B. Calculation ot torsional angle. The top bal of the fiure shows the
atoms and vector conventions used in the calculation of the torsional angle The
bottom half of the igure shows the projection of the bonds in a plane when
viewed down the center bond
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The force on each atom, using Eqs (A9) and (A/0) from the Appendix, is giver by

-VV= -VIVj 1,rl = -VV (26)
-Vj Vz -VVVrj - V2 VVr 2 = Y1V + V 2 V (2;)

-V, V = -V 2 VVtrz - V3 VV r = -V2V + VsV (30)
-V, V = -V31Vrs = -VIV. (3.)

Since the potentials used are solely fuetiorns of the torsional angle.

v = VCosi). (3?)
eacb of the terms in Eqs (2B)-,3:) can be eva'atced as

VI. dV~cos;) .(CoS;, = ,2,3 3
dcos c3

However, following the format of Eqs (A4)-(A7) of the Appendix, we can expand
the gradients of cosir in terms of the projections r, and rb to give

V(cosjp = V.cos;;Vjr. + Vbcos Vrt , ( = 1,2.3 (34)
From Eqs (20) and (21) we know the gradients of the torsional angle are given
by

Vrcosc = r _ r~cosc (3 )
r. r,. r 2.- -

V~cosc = r!. _ rb CO5

Using Eqs (35) and (36) with the vector tensor products of Eq (34) which are
given by Eqs. (A13)-(A15) of the Appendix, we have

fev Y rXT - ra~osi (37)

wily rcg X r, + r-. a c X r. (35)

9 3 V = r X __ ()COS.

Using Eqs. (37)-(39) with Eqs. (28)-(31) the forces on all four atoms can be
resolved.

Integration Module
The second step in molecular dynamics is the numerical integration of

Newton's Second Law for each atom i,

d'r,
di

where "%, is the mass of the i th particle, a, its acceleration. r, its position. and
t time. As pointed out above, the integration module depends on the type of
boundary condition in use, as this module also applies any position changes
necessary to keep the atoms in the unit cel (in the case of periodic boundaries)
or applies any restoring forces necessary (in the case of soft walls) The integra-
tion algorithm we use in each of these modules is the same, a version of the Ver-
let algorithm as discussed by Beeman57 with further mod~ications by Ander-
set.3 In our implementation, the vector difference in positions d, (t + 1) at tune
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step f + I is calculated from the previous difference d,(t) and the force.

d,'%t+') = dLat) + -- 7' 4'

In which t indicated the Lime step t, and h is the size of the time step Next the
new positions are calculated from the new difference in positions

r,(,t+ !) = r,\tt) + d t +,) . (4-2)

The rnprovement made by Andersen is that now only the difference in position is
stored rather than the velocity Therefore there is less round off error as tLE
nu.mbers being added in each stage of the calculation are cosEr in magnitude
A crude forward difference velocitN car.- easily be obta~ned by d!,mdrfi the

difference in position by the time step. or, if desired, more accurate veloci.ties
can be calculated 57

Beeinan 5 7 shows that higher order integration techniques tend not to be as
stable as the simple Verlet algorithm when larger time steps are used He also
shows that the Verlet algorithm conserves energy as well as other Lntegrators
tested in the large time step hmit The advantage of using this simple techmquIe
with the array processor is that only a rnimmal amount of memory is set aside
for the storage of positions and the past time history of the system as compared
with higher order integration methods

Data Collection Nodules

The data collection routine used for a particular application is often very
specialized and thus to aialyze different properties different AP modules must
be written. However, I)OU, the mechanism for buffering the data out to be the
host computer. is common to all routines once the property that is to collected
is calculated In many cases this property can be calculated in a vector function
program

Various data collection modules exist for use with Newton An example is
the module that calculates and collects dipole moments and polarizabibies for
the system as a function of time, in order to compute by linear response theory
the infrared 41 . 42 and Raman 4 "4" spectra These modules operate in a very simi-
lar manner to the force evaluation modules, in that for the most part they use a
hst to index the atoms involved in the data calculation and the relevant parame-
ters (such as static and derivative dipole moments for molecules) IDoUT saves
the data in two internal buffers in main data memory and then DMKs the data out
under interrupt control using a double buffering technique described in the next
section In general, the actua! data is all that is saved from an individual Newton
run Norme.lly, trajectories are not saved in that it is easier and faster to do the
run over rather than saving and storing the details of the run

IV. RI SLTS AND ANALYSZS

As pointed out in section I], the main advantage of an array processor is
high computational speed at a relatively low price In the way of benchmarks.
we have obtained the followmg results presented in Table II Column one shows
the various computers on which the benchmarks are taken Columns two, three,
and four compare the speed of the A?-i20B for three different molecular mechan-
Ics packages The one presented in column two is a direct C translation of our
AP molecular dynmics package run on a VAX nne and a&V irw without float-
Ing point accelerators (I. 's) Column three compares our ALP version against an
optimized Fortran version due to Hagler 58 and run on a VAX 11 /780 with a floating
point accelerator. Column four compares some speeds obtained for Monte Carlo



calculations from Chester. et ,W ,
Tae U. Compason a S-r: ateio- 7-.o.es on Vano.s Co.-m;r.e-

Comp it.e r No e. ae. Dyri mY _ cs Mom .e Ce.o
(b C a C A -,VAX' C- . . P',A = VAX'

VAX 11/780 s0 35
VAX I3, 37 15O
PD.D 11 300
Prie 400 50
IBM 370,!68 1.5
CX 7600 041

As can. be seen from the tabie our mo'ecular mechamrcs package is appr: :.-
mate!), thirty-five times faster than a VAX 1 /-o0 with a floating point acce;Eratcr
and an optimized Fortran compier Thus a simulation that can be run in a ve:
and a half on the AP-IWaB would take a year on a VAX even if the VAX were totai':"
dedicated to that calculation

Although the A=-303 has prcven to be a very fast and econornic mac.r-
for molecular mechanics and allows us to simulate systems which otherwis,.
would not be feasible it is far from ideal One concern is the word length of tt-
float:ng pont numbers For example, for many quantum mechanical calvu>-
tions 32 bit floatng point representations are inadequate wheras 64 bit pre: -

sion suffices The question arises as to the adequacy of the 38 bits o! the AP a_-.4
if particuar sections of algorithms can be painstakingly coded in the forc.
doub'e precision possible on the AP to give adequate results While most mdcc-

ular mechanics is certainly adequately handled with 35 bits, one might do tf.c
inLegration module for molecular dynamics in double prec i sion and leave Lt1 e
more computationally intensive force evaluation in single precision

Another feature missing in the AF-12 is the ability to :)WA data out of matn

data memory to the host processor preserving the full 38 bits of precision This
impacts the ability to do three things The first is that we would like to be able
to rapidly store uitermedatE results on disk so that the runs could be stopped
and started at a later time without loss of precision in the data A rapid method
of writing such intermediate flies would also facilitate periodic file dumps for
restart capability if the host system were to crash The second impacted area is
the ability to rapidly load and retrieve integers packed into floating point words
The amount of time spent in loading the AP through the virtual front panel rith
long packed lists, for example which would be necessary if neighbor lists were
used could be extraordinarly burdensome Thirdly, this limitation interferes
with making the AP a rapidly sl-arable machne rather than an exclusive use dev-
ice as it is now To make it truly sharable all of the machine's memories arnd
internal registers would have to be rapidly DMA'ed out to disk (swapped) and this
is not possible with the present architecture.

In future versions of array processors we would also like to see a separate
integer memory that could be accessed fasLer . Lacking this an instruction
should be added that would allow the access of all the bits of an integer packed
into a main data word Since molecular dynamics is not usually memory bound
and most code is parallel for each of the three coordinate axes, more than one
floating pomt adder and multiplier might be useful In this way calculations for
each of the three axes could be carried out in parallel rather than serially The
serial approach, however, is often convenient, especially given the fact that the
multipher is a three stage operation, but since the adder is only two stages it
often disrupts any attempts to build the physical symmetry of the problem into
the code. If such Improvements were to be incorporated, speed enhancements
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by utilizing fast main data memory could more easily be realized
Another obvious nusfeature is the absence of integer multipLcation vihch

makes the addressing of muluidmensona] arrays dffjcut Additional mem"r.
address registers so that more than one item could be fetched from diffEre-.,
banks of main data memory in the sa-r, instruction would replace the necess,tv
of using the writable table memory for selective data storage, thus allowing all
data to be accessible through the DUA channel. freeing table memory for st.dora
chanr-ged constants

There is currency available from Fioat:ng- Point Systems a 64 bt array pro-
cessor known as the Fs-i4 which so.ves the problem of numerical accuracy, at
least for most problems o! chemical interest It is, hohever. nc faster 'in fac.,
sonewlhat slower) than the Ak-120B and quite expensive It also differs in that
progrwrn memory and data merory occupy the same space, and thus the For-
tran complier approach although no faster in speed, is more feasible due to the
abundance of memory no, available for its bulky code This offers some advan-
tages, fo," example. for quantum, applications as large previouslV developed pro-
gra, packages can be ru. in the AP usi_,g its Fortran comp,ler with only thc
inner loops being opLLmzed as hand coded AP routines Studies of usual qua'-
turn packages midlicate that only 500 to :00. lines of code take up most of the
execution tUime. 80

Another improvement that would faclitate the use of array processors for
computational chemists. is a good higher level language compiler We would
suggest the language, 9 C For many reasons C is more appropriate than Fortran
for compiling into efficient A B-aoE assembly language For example C allows the
use of pointers to arrays as an alternative to subscripts incrementing and
decrEmenting a pointer and stepping along memory can be much more
efficiently handled in A.-i=oB assembly language than adding a subscript offset
(which may need to be decremented if it does not start at 0. such as is the case
with Fortran) to the array base address In addition, C allows the declaration of
variables as registers, thus allowing the programrnmer to warn the compiler that a
particular piece of data needs to be kept in data pad registers rather than writ-
ten and reread from memory We are optimistic that a good C compiler can be
written that will produce AF.-120 assembly language code good enough to
obsolete the desire to program in assembly language except for extremely criti-
cal loops which are executed too many times to tolerate any inefficiencies. The
only such loop of this type in our molecular dynamics code is the intermolecular
force evaluation, which is less than ten percent of the total AP code

The actual generation of such a compiler is a difihcult task Since the AP is
not of the von Neamarn architecture,25 there is little expertise in this area of
software design Ken Wilsont! has suggested a Monte Carlo method of code gen-
eration, whereby given certain rules and constraints the AP itself would try to
optir ize its generated assembly code using a .onte Carlo technique, varying
the code while prese.-rng its logical outcome In this case code, not particles,
voud be randomly moved with the overall length of the code being minimized
His attempt at imp'ernenting such an optimizer also starts with C language
source code.

All of the support code for Newton run on the host computer is written in C
This has allowed us to maintain a single set of source code fles which are shared
by many progralmers and used to simulate systems dramatically different in
nature C is much more structured than Fortran and self documenting in many
cases, as it has superior readability It discourages the use of "go to" state-
meinte which have been described as a marvelous way to write impcssible-to-
understand programs Although it is a higher level language it allows the
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programmer the freedom and degrees of manipulation of data found in most
typical assembly languages It is portable since there is no built-i I/O and s"v.-
tern dependencies are only in word lengths Although C is very closely te tc
the UNi operating system, there are C compilers running on VAXs under VM. cn
IBM 380's, on and various other machines There is a portable C compier that c,.-
be bought up onl most machines with just a few months of work The C compdler
itself is written in C

The advantages of the UNyX operating system8 .6 3 should not be cverlncke
The reason UNa and C are so related is that all of the UIX utilities and c'er 9 .
percent of the actual UNY kernel are Pr;tten in C Thus the U.Y operatung, F.-
tern itself is portable It is becoriung a standard operating s'stf, for a ,.
variety of computers, so that we can (and have) moved both the. UY opE-a*&.
system and Newton from one type of processor to another Its debu_gi4n ed-
irg. and friendliness to the user are superior, enhancing programmer prod,-
tivity and the ease of making and debugging changes to Newton.

The development of Newton would have been very dAffcult without the !N-\
operatirg system environment The operating system kernel ard device dr,\r:
for UN-X are written in C. and thus are easily changed We have hand tailored thf
A?-I20 driver to meet our needs It allows the host computer and the A_-=3 to
operate asynchronously, coordinating efforts via interrupts As the k?-203 fills
up its data buffers it sends an interrupt to the host which causes the host tc
empty the buffer from A.-10oB memory to d.sk while the Akmi20o continues the cal-
culation, fiting up a second buffer This means that there is no lost cormputat:cn
time by the A_;:i2o9 waiting for the host to empty the buffer and restart thr cal-
culation Furthermore this procedure allows the host program to be inactvated
(and even swapped) without having to loop just to check on the state of the AP
This change has increased our data throughput by over a factor of ten and allows
the use of the AP-i2os on a timesharing system with minimal impact to other
users.

UC . a third generation operating system, is easy to learn Our research
group consists entirely of chemists, most of whom have little previous trainrng in
computer science and most have had little difficulty in picking up the necessary
skills to use the operating system on a sophisticated level Since most have lit-
tle or no experience in traditional computer languages such as Fortran, it is
interesting to note that they can begin writing complicated C programs in much
less tune that it would have taken to gain the equivalent abilities in Fortran

V. CONCWISON
As computational chemists search for more computer power, others will

surely turn to array processors as we have, as they provide at the moment by
far the most computational power per hardware dollar, particularly since the
cost is low enough that they can be dedicated full-time to a particular task or
class of tasks While running on a supercomputer such as a Cray-! will result in
more computation per hour of processor use, it is unlikely to result in as much
computation per year The reason is that the equivalent to 24 hours per day of
dedicated AK1-m0B time is, for example,& PA.5, two to eight hours per day of
Cray-I Ume, a usage rate which few, if any, research groups are able to afford
over the long run Even if a group's budget were large enough to annually pur-
chase this much supercomputer time, for the same cost several array proces-
sors could be purchased each year.

While array processor use is very appealing and the reward can be high, we
believe our effort in bringing up a general purpose program package for molecu-
lar mechanics has also uncovered many of the pitfalls That we can run in ten



days problems which would require a year of dedicated VAY iinec time allows us
to handle problems in solution reaction and biomolecular dynaimics which ,owd
not otherwise be feasible However, the price we have paid is substanti-L *nml
molecular mechanics is straightforward in nature, it has taken over six mc;-
years to develop efficient AP code to carry out the task

An important feature of our code is its modularity Since reprogra-mming is
expensive, we have attempted to isolate the individual aspects of the calculation
into individual AP modules The generality of the program package allows us tc.
simulate a wide variety of systems using essentially the same code Past work
includes the calculation from molecular dynamics and linear respcnse, the ory z,
xrmarared. 4! . 42 Raman 4 1-45 electronic 4 , 47 spectra in the gas phasE and in hi.d
solution In addition, we have computed the dynamics and rotatjora and vibr -
tional spectra of alkanes (such as methane, ethane, cyclohexane and their sciuL-
Lons). water (in both the gas and liquid phase as well as various N-mers of water
molecules), and ions and microcrystals dissolved in water. Ve have computed
the transient Ranan and electronic absorption spectra during the course of a
chemical reaction by computing the dynarmics for the photod:ssociatjon o!
iodine in a solution of liquid xenon. 4 447 Other applications involve thc comrputa-
Lion from molecular dynamics of thermodyramic quantities and their quaontu-.i
correction through spectral analysis of atomic velocity time histories 48 Newton
also incorporates a general set of protein potentials for biomolecules and is
currently being appLpd to the molecular mechanics of polypeptides and rem..-
branes in collaboration with A Hagler.
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APPENDIX C N RULE FOR GRADIENTS

In the calculation and decomposition of forces it is often convement tc
switch from Cartesian to internal coordinate systems. This presents difficulties
as the gradients must also undergo this transformation. In this appendix we
present formula for converting gradients in one frame of reference to another.

The gradient with respect to the Cartesian coordinates of particle i
r, = zTT+ yj+ z. is the vector operator given by

T, = a +I -P + I(Al)

The force on the i th particle F can be expressed using the operator in Eq (Al)
as

Ft = -V. (A2)
where Y is the potential energy. Commonly, however, the potential V is more
easily expressed as a function of some internal coordinate %", where the internal
coordinate is a function of the Cartesian coordinates, r, = r,(r,) We would
therefore like to convert the gradient in Eq (A2) into a gradient with respect to
the internal coordinate r,. Using the chain rule, the following terms result

a Ox o. Ox, oat Ox,

(o OK by'. By s.
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+ z a v !z.+ 8 Y 1Y Lv (A3)

Equation (A3) can be written in a more compact form as

V. V',.) = V Ur.)YVr 6  (A.)
where V. V(r,) is a vector with components

.V(r.) Ox= OY. 8. (At

and Vr, is a tensor6 4 with comrponrnts

'@a L4Y or,
8;' O~jt 8;

V ar 0 a= &Y. (AC)Oxr .: y 0 -, ,z (
02. 8

2i, aze

8z@ 8z 8z68z Oy, 8;

Thus by Eqs (A5) and (A6), the expression in Eq (A4) is actually the vector
matrix product5

OZ &Y. az.

V. V.) Vr. = 8av 8V aV ft. a-. -yo (A-)
aOx6  &Y. z 8;. 8fj iz,

8z, 0z. OZ.

which when expanded gives Eq (A3)
We will now apply this technique to the examples presented in the text. In

the case of the three body module, where the internal coordinate vectors r. and
r, as in Eqs (8) and (7) of the text. respectively, are given by the difference in
position of the i th particle with respect to the j Lb particle, viz,

r. = r. - r (AB)
ft can be easily seen by evaluating the partial derivatives in Eq (A) using Eq
(AB) that the relevant tensors are given by

Vr, = I (Ag)

VYr. = -I. (AO)
where I is the unit tensor.

However, in the four body force decomposition the internal coordinates r.
and r1 are vector cross products of the bond vectors r, r2, and r3, viz.

r.= , r,, = [,,,z 2 -z,!y, -z2 -z 1z., zI '--z.,I I. (Al.)

For this case we must evaluate the partial derivatives in Eq. (A6) using Eq (A! 1)
except with respect to the Cartesian vector r, instead of rt. This gives for the
gradient expressed in Eq (34) of the text the following result

V~~~Coq0 =cs Ocs e~cosp -S 2 - V . Al
VICMW~~Y axe ey zO A2

a --- 0 D

• . '. : " " ____... - iT . ..... . "
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When Eq (A12) is expanded it becomes obvious that it is equivalent to

V cosic = 4 X V.cos; . (A:'3)

Similarly, the following results can be obtained for the other gradients

Vecosp = Vocosi X r, + Vbcosq X rs (A:4)

Vicosq; = r 2 X Vcosip (A'5)
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